General Lieb–Schultz–Mattis Type Theorems for Quantum Spin Chains

نویسندگان

چکیده

We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb–Schultz–Mattis type theorems, i.e., no-go theorems that rule out the existence unique gapped ground state (or, more generally, pure split state), quantum spin chains with on-site symmetry. first prove theorem translation invariant unifies and extends two proved by authors (Ogata Tasaki, Commun. Math. Phys. 372 951–962, (2019) https://doi.org/10.1007/s00220-019-03343-5 ). then are under reflection about origin not necessarily invariant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable multiparametric quantum spin chains

Using Reshetikhin’s construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions. We illustrate how this general formalism applies to construct multiparametric versions of the supersymmetric t-J and U models. PACS: 71.20.Ad...

متن کامل

Temperley - Lieb Quantum Spin Chains

We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U q [sl(2)].

متن کامل

Random Spin-1 Quantum Chains

We study disordered spin-1 quantum chains with random exchange and biquadratic interactions using a real space renormalization group approach. We find that the dimerized phase of the pure biquadratic model is unstable and gives rise to a random singlet phase in the presence of weak disorder. In the Haldane region of the phase diagram we obtain a quite different behavior.

متن کامل

Uq(glN ) quantum spin chains

The glN and Uq(glN ) quantum spin chains in the presence of integrable spin impurities are considered. Within the Bethe ansatz formulation, we derive the associated transmission amplitudes, and the corresponding transmission matrices –representations of the underlying quadratic algebra– that physically describe the interaction between the various particle-like excitations displayed by these mod...

متن کامل

Quantum Loop Modules and Quantum Spin Chains

We construct level-0 modules of the quantum affine algebra Uq ( ŝl2 ) , as the q-deformed version of the Lie algebra loop module construction. We give necessary and sufficient conditions for the modules to be irreducible. We construct the crystal base for some of these modules and find significant differences from the case of highest weight modules. We also consider the role of loop modules in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-04116-9